Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes.

Identifieur interne : 001B30 ( Main/Exploration ); précédent : 001B29; suivant : 001B31

Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes.

Auteurs : Margaret Staton [États-Unis] ; Tetyana Zhebentyayeva [États-Unis] ; Bode Olukolu [États-Unis] ; Guang Chen Fang [États-Unis] ; Dana Nelson [États-Unis] ; John E. Carlson [États-Unis] ; Albert G. Abbott [États-Unis]

Source :

RBID : pubmed:26438416

Descripteurs français

English descriptors

Abstract

BACKGROUND

Chinese chestnut (Castanea mollissima) has emerged as a model species for the Fagaceae family with extensive genomic resources including a physical map, a dense genetic map and quantitative trait loci (QTLs) for chestnut blight resistance. These resources enable comparative genomics analyses relative to model plants. We assessed the degree of conservation between the chestnut genome and other well annotated and assembled plant genomic sequences, focusing on the QTL regions of most interest to the chestnut breeding community.

RESULTS

The integrated physical and genetic map of Chinese chestnut has been improved to now include 858 shared sequence-based markers. The utility of the integrated map has also been improved through the addition of 42,970 BAC (bacterial artificial chromosome) end sequences spanning over 26 million bases of the estimated 800 Mb chestnut genome. Synteny between chestnut and ten model plant species was conducted on a macro-syntenic scale using sequences from both individual probes and BAC end sequences across the chestnut physical map. Blocks of synteny with chestnut were found in all ten reference species, with the percent of the chestnut physical map that could be aligned ranging from 10 to 39 %. The integrated genetic and physical map was utilized to identify BACs that spanned the three previously identified QTL regions conferring blight resistance. The clones were pooled and sequenced, yielding 396 sequence scaffolds covering 13.9 Mbp. Comparative genomic analysis on a microsytenic scale, using the QTL-associated genomic sequence, identified synteny from chestnut to other plant genomes ranging from 5.4 to 12.9 % of the genome sequences aligning.

CONCLUSIONS

On both the macro- and micro-synteny levels, the peach, grape and poplar genomes were found to be the most structurally conserved with chestnut. Interestingly, these results did not strictly follow the expectation that decreased phylogenetic distance would correspond to increased levels of genome preservation, but rather suggest the additional influence of life-history traits on preservation of synteny. The regions of synteny that were detected provide an important tool for defining and cataloging genes in the QTL regions for advancing chestnut blight resistance research.


DOI: 10.1186/s12864-015-1942-1
PubMed: 26438416
PubMed Central: PMC4595192


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes.</title>
<author>
<name sortKey="Staton, Margaret" sort="Staton, Margaret" uniqKey="Staton M" first="Margaret" last="Staton">Margaret Staton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. mstaton1@utk.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhebentyayeva, Tetyana" sort="Zhebentyayeva, Tetyana" uniqKey="Zhebentyayeva T" first="Tetyana" last="Zhebentyayeva">Tetyana Zhebentyayeva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA. tzhebe@clemson.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics and Biochemistry, Clemson University, Clemson, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Olukolu, Bode" sort="Olukolu, Bode" uniqKey="Olukolu B" first="Bode" last="Olukolu">Bode Olukolu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA. baolukol@ncsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Carolina State University, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fang, Guang Chen" sort="Fang, Guang Chen" uniqKey="Fang G" first="Guang Chen" last="Fang">Guang Chen Fang</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA/APHIS/BRS, Raleigh, NC, USA. Guang-Chen.Fang@aphis.usda.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA/APHIS/BRS, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Dana" sort="Nelson, Dana" uniqKey="Nelson D" first="Dana" last="Nelson">Dana Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Southern Institute of Forest Genetics, Southern Research Station, U.S. Forest Service, Saucier, MS, USA. dananelson@fs.fed.us.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Southern Institute of Forest Genetics, Southern Research Station, U.S. Forest Service, Saucier, MS</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
<affiliation wicri:level="4">
<nlm:affiliation>The School of Forest Resources and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA. jec16@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The School of Forest Resources and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Abbott, Albert G" sort="Abbott, Albert G" uniqKey="Abbott A" first="Albert G" last="Abbott">Albert G. Abbott</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry, Forest Health Research and Education Center, Lexington, KY, USA. albert.abbott@uky.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Forest Health Research and Education Center, Lexington, KY</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26438416</idno>
<idno type="pmid">26438416</idno>
<idno type="doi">10.1186/s12864-015-1942-1</idno>
<idno type="pmc">PMC4595192</idno>
<idno type="wicri:Area/Main/Corpus">001A79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A79</idno>
<idno type="wicri:Area/Main/Curation">001A79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A79</idno>
<idno type="wicri:Area/Main/Exploration">001A79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes.</title>
<author>
<name sortKey="Staton, Margaret" sort="Staton, Margaret" uniqKey="Staton M" first="Margaret" last="Staton">Margaret Staton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. mstaton1@utk.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhebentyayeva, Tetyana" sort="Zhebentyayeva, Tetyana" uniqKey="Zhebentyayeva T" first="Tetyana" last="Zhebentyayeva">Tetyana Zhebentyayeva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA. tzhebe@clemson.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics and Biochemistry, Clemson University, Clemson, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Olukolu, Bode" sort="Olukolu, Bode" uniqKey="Olukolu B" first="Bode" last="Olukolu">Bode Olukolu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA. baolukol@ncsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, North Carolina State University, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fang, Guang Chen" sort="Fang, Guang Chen" uniqKey="Fang G" first="Guang Chen" last="Fang">Guang Chen Fang</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA/APHIS/BRS, Raleigh, NC, USA. Guang-Chen.Fang@aphis.usda.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA/APHIS/BRS, Raleigh, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Dana" sort="Nelson, Dana" uniqKey="Nelson D" first="Dana" last="Nelson">Dana Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Southern Institute of Forest Genetics, Southern Research Station, U.S. Forest Service, Saucier, MS, USA. dananelson@fs.fed.us.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Southern Institute of Forest Genetics, Southern Research Station, U.S. Forest Service, Saucier, MS</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
<affiliation wicri:level="4">
<nlm:affiliation>The School of Forest Resources and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA. jec16@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The School of Forest Resources and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Abbott, Albert G" sort="Abbott, Albert G" uniqKey="Abbott A" first="Albert G" last="Abbott">Albert G. Abbott</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry, Forest Health Research and Education Center, Lexington, KY, USA. albert.abbott@uky.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Forest Health Research and Education Center, Lexington, KY</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational Biology (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genomics (methods)</term>
<term>Magnoliopsida (classification)</term>
<term>Magnoliopsida (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Physical Chromosome Mapping (MeSH)</term>
<term>Quantitative Trait Loci (MeSH)</term>
<term>Synteny (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie informatique (MeSH)</term>
<term>Cartographie physique de chromosome (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Génomique (méthodes)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Magnoliopsida (classification)</term>
<term>Magnoliopsida (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Synténie (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Magnoliopsida</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Magnoliopsida</term>
<term>Synténie</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computational Biology</term>
<term>Evolution, Molecular</term>
<term>Genome, Plant</term>
<term>Phylogeny</term>
<term>Physical Chromosome Mapping</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Biologie informatique</term>
<term>Cartographie physique de chromosome</term>
<term>Génome végétal</term>
<term>Locus de caractère quantitatif</term>
<term>Magnoliopsida</term>
<term>Phylogenèse</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Chinese chestnut (Castanea mollissima) has emerged as a model species for the Fagaceae family with extensive genomic resources including a physical map, a dense genetic map and quantitative trait loci (QTLs) for chestnut blight resistance. These resources enable comparative genomics analyses relative to model plants. We assessed the degree of conservation between the chestnut genome and other well annotated and assembled plant genomic sequences, focusing on the QTL regions of most interest to the chestnut breeding community.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The integrated physical and genetic map of Chinese chestnut has been improved to now include 858 shared sequence-based markers. The utility of the integrated map has also been improved through the addition of 42,970 BAC (bacterial artificial chromosome) end sequences spanning over 26 million bases of the estimated 800 Mb chestnut genome. Synteny between chestnut and ten model plant species was conducted on a macro-syntenic scale using sequences from both individual probes and BAC end sequences across the chestnut physical map. Blocks of synteny with chestnut were found in all ten reference species, with the percent of the chestnut physical map that could be aligned ranging from 10 to 39 %. The integrated genetic and physical map was utilized to identify BACs that spanned the three previously identified QTL regions conferring blight resistance. The clones were pooled and sequenced, yielding 396 sequence scaffolds covering 13.9 Mbp. Comparative genomic analysis on a microsytenic scale, using the QTL-associated genomic sequence, identified synteny from chestnut to other plant genomes ranging from 5.4 to 12.9 % of the genome sequences aligning.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>On both the macro- and micro-synteny levels, the peach, grape and poplar genomes were found to be the most structurally conserved with chestnut. Interestingly, these results did not strictly follow the expectation that decreased phylogenetic distance would correspond to increased levels of genome preservation, but rather suggest the additional influence of life-history traits on preservation of synteny. The regions of synteny that were detected provide an important tool for defining and cataloging genes in the QTL regions for advancing chestnut blight resistance research.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26438416</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes.</ArticleTitle>
<Pagination>
<MedlinePgn>744</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-015-1942-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Chinese chestnut (Castanea mollissima) has emerged as a model species for the Fagaceae family with extensive genomic resources including a physical map, a dense genetic map and quantitative trait loci (QTLs) for chestnut blight resistance. These resources enable comparative genomics analyses relative to model plants. We assessed the degree of conservation between the chestnut genome and other well annotated and assembled plant genomic sequences, focusing on the QTL regions of most interest to the chestnut breeding community.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The integrated physical and genetic map of Chinese chestnut has been improved to now include 858 shared sequence-based markers. The utility of the integrated map has also been improved through the addition of 42,970 BAC (bacterial artificial chromosome) end sequences spanning over 26 million bases of the estimated 800 Mb chestnut genome. Synteny between chestnut and ten model plant species was conducted on a macro-syntenic scale using sequences from both individual probes and BAC end sequences across the chestnut physical map. Blocks of synteny with chestnut were found in all ten reference species, with the percent of the chestnut physical map that could be aligned ranging from 10 to 39 %. The integrated genetic and physical map was utilized to identify BACs that spanned the three previously identified QTL regions conferring blight resistance. The clones were pooled and sequenced, yielding 396 sequence scaffolds covering 13.9 Mbp. Comparative genomic analysis on a microsytenic scale, using the QTL-associated genomic sequence, identified synteny from chestnut to other plant genomes ranging from 5.4 to 12.9 % of the genome sequences aligning.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">On both the macro- and micro-synteny levels, the peach, grape and poplar genomes were found to be the most structurally conserved with chestnut. Interestingly, these results did not strictly follow the expectation that decreased phylogenetic distance would correspond to increased levels of genome preservation, but rather suggest the additional influence of life-history traits on preservation of synteny. The regions of synteny that were detected provide an important tool for defining and cataloging genes in the QTL regions for advancing chestnut blight resistance research.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Staton</LastName>
<ForeName>Margaret</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. mstaton1@utk.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhebentyayeva</LastName>
<ForeName>Tetyana</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA. tzhebe@clemson.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Olukolu</LastName>
<ForeName>Bode</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA. baolukol@ncsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Guang Chen</ForeName>
<Initials>GC</Initials>
<AffiliationInfo>
<Affiliation>USDA/APHIS/BRS, Raleigh, NC, USA. Guang-Chen.Fang@aphis.usda.gov.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>Dana</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Southern Institute of Forest Genetics, Southern Research Station, U.S. Forest Service, Saucier, MS, USA. dananelson@fs.fed.us.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carlson</LastName>
<ForeName>John E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>The School of Forest Resources and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA. jec16@psu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abbott</LastName>
<ForeName>Albert G</ForeName>
<Initials>AG</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry, Forest Health Research and Education Center, Lexington, KY, USA. albert.abbott@uky.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020161" MajorTopicYN="N">Physical Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26438416</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-015-1942-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-015-1942-1</ArticleId>
<ArticleId IdType="pmc">PMC4595192</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2009;9:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Jan;96(1):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 14;475(7355):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2005;110(1-4):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 May;39(10):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Oct 1;31(19):5654-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1630-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19570905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Dec 22;480(7378):520-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22089132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):1859-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Dec;17(12):1093-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 14;463(7278):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 May;43(5):476-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Jul;87(7):751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 31;485(7400):635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22660326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Feb 15;27(4):578-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22192575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Oct;13(5):523-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Caroline du Sud</li>
<li>Kentucky</li>
<li>Pennsylvanie</li>
<li>Tennessee</li>
<li>État du Mississippi</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Staton, Margaret" sort="Staton, Margaret" uniqKey="Staton M" first="Margaret" last="Staton">Margaret Staton</name>
</region>
<name sortKey="Abbott, Albert G" sort="Abbott, Albert G" uniqKey="Abbott A" first="Albert G" last="Abbott">Albert G. Abbott</name>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
<name sortKey="Fang, Guang Chen" sort="Fang, Guang Chen" uniqKey="Fang G" first="Guang Chen" last="Fang">Guang Chen Fang</name>
<name sortKey="Nelson, Dana" sort="Nelson, Dana" uniqKey="Nelson D" first="Dana" last="Nelson">Dana Nelson</name>
<name sortKey="Olukolu, Bode" sort="Olukolu, Bode" uniqKey="Olukolu B" first="Bode" last="Olukolu">Bode Olukolu</name>
<name sortKey="Zhebentyayeva, Tetyana" sort="Zhebentyayeva, Tetyana" uniqKey="Zhebentyayeva T" first="Tetyana" last="Zhebentyayeva">Tetyana Zhebentyayeva</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26438416
   |texte=   Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26438416" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020